
5b002

 1

REAL-TIME PAYLOAD CONTROL AND MONITORING
ON THE WORLD WIDE WEB

Charles Sun and May Windrem

NASA Ames Research Center
MS 244-19

Moffett Field, CA 94087, USA
FAX: 415-604-0673, E-mail: csun@mail.arc.nasa.gov

 E-mail: mwindrem @mail.arc.nasa.gov

ABSTRACT

World Wide Web (W3) technologies such as the Hypertext Transfer Protocol (HTTP)
and the Java object-oriented programming environment offer a powerful, yet relatively
inexpensive, framework for distributed application software development. This paper
describes the design of a real-time payload control and monitoring system that was
developed with W3 technologies at NASA Ames Research Center. Based on Java
Development Toolkit (JDK) 1.1, the system uses an event-driven Òpublish and
subscribeÓ approach to inter-process communication and graphical user-interface
construction. A C Language Integrated Production System (CLIPS) compatible
inference engine provides the back-end intelligent data processing capability, while Oracle
Relational Database Management System (RDBMS) provides the data management
function. Preliminary evaluation shows acceptable performance for some classes of
payloads, with Java's portability and multimedia support identified as the most significant
benefit.

1. INTRODUCTION

The Space Station Biological Research Project (SSBRP) at NASA Ames Research Center is
responsible for Life Sciences research onboard the International Space Station. SSBRP
payloads include host systems and habitats. Examples of host systems are Centrifuge,
Glovebox, and Habitat Housing Rack. Examples of habitats are Insect Habitat, Aquatic
Habitat, and Cell Culture Unit. Because the research experiments involve many Principal
Investigators (PIs) worldwide, providing cost-effective real-time data feed and data
visualization capabilities to these PIs pose a significant engineering challenge. One
solution is to leverage existing World Wide Web (W3) technologies such as Hypertext
Transfer Protocol (HTTP) and the Java object-oriented programming environment. These
technologies are universal (open standard) and low cost. This paper describes the design
and implementation of a SSBRP payload control and monitoring system prototype that
leverages these technologies, along with the lessons learned.

2. THE OPERATION CONCEPT

Figure 1 shows the proposed system operation. The telemetry downlink provides the
data as UDP/IP packets to the User Operations Facility (UOF) at Ames Research
Center. The maximum data rate is expected to be 10Mbps, including compressed digital
video. A subset of the data is repackaged as TCP/IP packets at the UOF and forwarded
to PIs in remote locations via the Internet. For command up-link, PIs request
commands at their respective remote locations; the UOF then authorizes those requests.

5b002

 2

Experiment
Network

Internet

Remote PI
Access

User
Operations

Facility

NASA Payload

NASA Payload

NASA Payload

Operator
Access

Remote PI
Access

Remote PI
Access

Figure 1. The SSBRP Operation Concept

3. SOFTWARE REQUIREMENTS

The nature of SSBRP operations suggests the following software requirements for the
UOF:

· Graphical User Interface
· Snapshot & Motion Video (MPEG) Support
· Rule-based Intelligence for Automatic Problem Detection
· Data Management using Industry-Strength RDMS
· Platform Independent Distributed Clients
· Internet TCP/IP Data Distribution
· On-Orbit Configuration Management Support

4. A REVIEW OF EXISTING SOLUTIONS

In the summer of 1997, we evaluated several Commercial Off The Shelf (COTS) software
packages using the software requirements as evaluation criteria. Table 1 summarizes our
findings. In conclusion, we found that the Internet W3-based Java programming
environment to be better suited for our requirements than X-Windows based (RTworks,
G2, Sammi) or Microsoft Windows based (LabWindows, LabView) COTS frameworks.

5b002

 3

GUI Video RuleBase Database Platform Network Config

RTworks Good N/A Good Fair Good Good N/A
G2 Fair N/A Good N/A N/A Fair N/A
Sammi Good N/A N/A N/A N/A Fair N/A
LabView Good N/A N/A N/A Fair N/A N/A
LabWindows Fair N/A N/A Fair N/A Fair N/A
Java Good Fair Fair Good Good Good Fair

Table 1. A Comparison of Existing Software Frameworks with Java
(Note: N/A means Not Available.)

5. SYSTEM DESIGN

5. 1 THE REAL-TIME CONTROL AND MONITORING SUBSYSTEM

This subsystem is responsible for distributing data and generating commands in real-time
for UOF operators and PIs at remote locations. An event-driven Òpublish-and-subscribeÓ
model is used to create a highly scalable, loosely coupled framework that can be easily
modified for different science experiments over the lifetime of the Space Station. This
framework is depicted in Figure 2 using Unified Modeling Language (UML) notation.

WhiteBoard

addSubject()
removeSubject()

Publisher
name

Subscriber
name

update()

Message
TimeStamp

Subject
name

publish()
subscribe()
unsubscribe()

1

0..*

0..*

1..* 0..*

0..*

1

1

0..*

1

1

1

0..*

1..* 0..*

0..*

Figure 2. A ÒWhite BoardÓ Publish-and-Subscribe Object Model

Under this framework, there are three major types of entities (classes):
 1. White Board (WB), the event-passing server.
 2. Data Publisher (DP), the data or command event source.
 3. Data Subscriber (DS), the event recipient.

The White Board (WB) is the centerpiece of the model. A WB contains many Subjects
defined by DPs. The messages passed from a DP to DSs are associated with unique
Subject names. A message can be Simple or Composite. A Simple Message contains one
object such as Double, String, Integer. A Composite Message contains a serialized
collection of objects.

5b002

 4

The following sequence of events takes place in a typical message passing operation
between a DP and a DS:
 1. DP defines a Subject S on WB (this causes a new Subject to be created).
 2. DS subscribes to Subject S on WB.
 3. DP publishes a message related to Subject S.
 4. Subject S forwards the message to all DS who subscribe to Subject S.
This interaction is shown in the UML Object Interaction diagram in Figure 3 below.

 : Publisher : WhiteBoard : Subject : Subscriber

addSubject
create

subscribe

publish

update

Figure 3. A ÒWhite BoardÓ Publish-and-Subscribe Event Model

5.2 THE DATA STORAGE AND RETRIEVAL SUBSYSTEM

This subsystem is responsible for storing real-time data and distributing stored data via
the Internet. Because the subsystemÕs operation is very similar to transaction-oriented
business information systems, a standard client/server distributed database framework
is used. The subsystem stores video data as files, which are indexed by time-stamped
entries in the database for retrieval.

6. THE JAVA SOLUTION

The first Java prototype was completed using JDK 1.1 in December of 1997. The
development effort took two software engineers less than 4 months, because the Java
programming environment provides many timesaving component packages.
Furthermore, the availability of Integrated Development Environment (IDE), such as
Java Workshop and Borland Jbuilder, simplified many Graphical User Interface
construction tasks and significantly reduced our development time. The utilization of
Java JDK and 3rd party packages is summarized in Table 2.

5b002

 5

Problem Solution
White Board Framework RMI
GUI Construction JavaBean
Configuration Management Object Serialization
Motion Video Java Media Framework
Intelligent Agent JESS
Database integration JDBC

Table 2. Selected Java JDK 1.1 and 3rd Party Packages

6.1 THE WHITE BOARD FRAMEWORK BASED ON RMI

Remote Method Invocation (RMI) is a set of classes that enables Java programs to
communicate with each other on the object level across a TCP/IP network. RMI hides
the details of byte-level ÒsocketÓ communication from Java programmers. The ÒWhite
BoardÓ abstract model for Inter-Process Communication (IPC) was constructed using
Java RMI and this turned out to be a simple task because the RMI abstraction was
flexible and easy-to-use.

6.2 GUI CONSTRUCTION USING JAVABEANS

JavaBeans is a standard for re-usable Java components. Most Java IDE tools accept the
standard and provide programmers visual Òdrag and dropÓ capabilities using
JavaBeans. A set of JavaBeans components were developed specifically for control and
monitoring tasks and then assembled using Borland JBulder software tool. Figure 4
and Figure 5 show sample GUI Applets constructed using the JavaBeans technique.

6.3 CONFIGURATION MANAGEMENT USING OBJECT SERIALIZATION

Object Serialization is a convenient way to package many objects together into one large
object for transporting through RMI or persistent storage. One important task for the
UOF is tracking the location of each habitat and the overall configuration of the onboard
hosts. To simplify the task of updating and storing configuration history, the
configuration of the entire payload facility is represented as a tree data-structure and
combined together as a single object using the Object Serialization feature of JDK 1.1.

6.4 MOTION VIDEO INTEGRATION USING JAVA MEDIA FRAMEWORK

The systemÕs video playback capability is achieved using Java Media Framework
(JMF) which supports the MPEG-1 format and HTTP data transfer. Currently, JMF
1.0 is available only on three computer platforms (Sun, Intel, and SGI). MPEG-2
support in future JMF release is unknown.

5b002

 6

6.5 INTELLIGENT AGENT USING JESS

The rule-based intelligent agent under development is based on JESS (Java Expert
System Shell), a Java port of CLIPS. Because many CLIPS documents and sample codes
are available in the public domain, JESS was our choice for writing the agent under Java.
The agent works as a watchdog and data limit detector in the background. Should a
problem be detected, the agent would generate a warning message. In terms of the White
Board framework, the agent is configured as a subscriber for certain raw data sets and as a
publisher for warning messages.

6.6 DATABASE INTEGRATION USING JDBC

Java Database Connectivity (JDBC) is the standard interface for Java programs to
connect to a Relational Database. There are two types of JDBC implementations: 2-tier
JDBC Bridge, and 3-tier networked JDBC. A JDBC bridge connects to a database
server on the local host while a networked JDBC connects to a database server on a
remote host. The prototype uses a networked JDBC implementation from WebLogic
Inc. for connecting to Oracle 7 running on a SGI server. The database supports real-
time data storage and off-line data retrieval.

Figure 4. A Sample User-Interface Display (Top Level)

5b002

 7

Figure 5. A Sample User-Interface Display (Detailed Level)

7. LESSONS LEARNED

· Acceptable Performance for Low-Bandwidth Applications
Our test showed that Java provides acceptable performance for low-bandwidth
applications, even under the interpreted environment of Java Virtual Machine. Under the
constant load of a few Kbytes per second, our client-side application running on a
Pentium/166 notebook PC on a 10BaseT LAN encountered no performance problems.
This result encourages us to adapt Java to support the upcoming SSBRP mission, which
has a small set of data points and a low sampling rate.

· Low-Cost Platform-Independent Software Development
We were pleasantly surprised by the high quality of free Java JDK software provided by
Sun Microsystems and Silicon Graphics. Very few portability problems were encountered
when we executed the client-side Applet using the ÒappletviewerÓ program on different
computer platforms.

· Applet Deployment Difficulties within Web Browser Software
Although our Java ÒAppletÓ performs consistently within the ÒappletviewerÓ program, it
encounters problems running inside some Web Browser software. For example, Microsoft
Internet Explorer does not support RMI because RMI competes with Microsoft DCOM
standard. Apparently, this is a well-known problem and at least three solutions exist today:
(1) launch Applet with ÒappletviewerÓ (2) install Java Activator, and (3) run the client
program as an application with Zero Administration Framework.

5b002

 8

· Security Model Incompatibilities
Object Signing is problematic because many different standards exist. JDK Object
Signing will not work within Netscape Communicator. Netscape Object Signing will not
work with Microsoft Internet Explorer. We will wait until further in the design process to
allow the differences in the standards to be resolved or for a single standard to be
accepted.

· Non-Platform-Independent Features
Many of JDKÕs most exciting new features, such as video playback and speech
recognition, are not truly platform-independent at this time. For example, Java Media
Framework (JMF) is limited to the Intel, Sun, and SGI platforms. Speech Framework is
limited to the Intel platform. Multimedia features are thus more useful in the context of
Local Area Network deployment, in which the client platform and bandwidth availability
are well defined.

8. FUTURE DIRECTION

· Improving Event-Based IPC Model
We plan to incorporate sophisticated capabilities such as Access Control, Load Balancing
and Fault Tolerance into our event-based IPC model. After we completed the first
prototype in December of 1997, two commercial Publish-and-Subscribe IPC frameworks
appeared on the market: Tengah Even Model and JavaSpace. These frameworks provide
a higher level of IPC abstraction than RMI, and thus offer potential savings in
development time.

· Improving Client-side Software Deployment Environment
Because of the incompatibility problems with various Web browser software, we are
searching for an alternative to the existing ÒAppletÓ environment for client-side software
deployment. The two candidates are Java Activator, and Zero Administration Client
(ZAC). Java Activator allows the latest version of JDK to be installed as a plug-in module
independent of browser software. ZAC provides a zero-maintenance framework for
running Java application on the client-side, and completely removes the deployment
dependency on browser software.

REFERENCES

1. Space Station Biological Research Project (SSBRP) http://pyrocis.arc.nasa.gov
2. HyperText Transfer Protocol. http://www.w3.org/hypertext/WWW/Protocols
3. Java Programming Language. http://www.javasoft.com
4. RTworks software framework. Talarian Corp. http://www.talarian.com
5. G2, Gensym Corporation. http://www.gensym.com
6. Sammi, Kinesix Corporation. http://www.kinesix.com
7. LabView & LabWindows, National Instruments. http://www.natinst.com
8. JESS, http://herzberg.ca.sandia.gov
9. C Language Integrated Production System (CLIPS),
 http://www.jsc.nasa.gov/~clips/CLIPS.html
10. Java Media Framework, Speech API, JavaSpace , Java Activator

http://java.sun.com/javaone/javaone98/sessions/
11. Tengah JDBC & Zero Administration Client, WebLogic Inc, http://www.weblogic.com
12. C. Sun, L. Picinich and M. Windrem. Application of World-Wide-Web in Payload

Operations, Fourth International Symposium on Space Mission Operations and
Ground Data Systems (SpaceOps 96), Munich, Germany, 1996.
http://www.esoc.esa.de/external/mso/SpaceOps/2 33/2 33.html

